Advanced Search



ISSN  2096-3955

CN  10-1502/P

Citation: Zheng, T. Y., He, Y. M., and Zhu, Y. (2022). A new approach for inversion of receiver function for crustal structure in the depth domain. Earth Planet. Phys., 6(1), 83–95.

2022, 6(1): 83-95. doi: 10.26464/epp2022008


A new approach for inversion of receiver function for crustal structure in the depth domain


Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences (CAS), Beijing 100029, China


University of Chinese Academy of Sciences, Beijing 100049, China

Corresponding author: YuMei He,

Received Date: 2021-08-11
Web Publishing Date: 2021-11-23

A method for reconstructing crustal velocity structure using the optimization of stacking receiver function amplitude in the depth domain, named common conversion amplitude (CCA) inversion, is presented. The conversion amplitude in the depth domain, which represents the impedance change in the medium, is obtained by assigning the receiver function amplitude to the corresponding conversion position where the P-to-S conversion occurred. Utilizing the conversion amplitude variation with depth as an optimization objective, imposing reliable prior constraints on the structural model frame and velocity range, and adopting a stepwise search inversion technique, this method efficiently weakens the tendency of easily falling into the local extremum in conventional receiver function inversion. Synthetic tests show that the CCA inversion can reconstruct complex crustal velocity structures well and is especially suitable for revealing crustal evolution by estimating diverse velocity distributions. Its performance in reconstructing crustal structure is superior to that of the conventional receiver function imaging method.

Key words: crustal imaging, receiver function, depth domain, inversion

Ai, Y. S., Liu, P. C., and Zheng, T. Y. (1998). Adaptive hybrid global inversion algorithm. Sci. China Ser. D-Earth Sci., 41(2), 137–143.

Ammon, C. J., Randall, G. E., and Zandt, G. (1990). On the nonuniqueness of receiver function inversions. J. Geophys. Res. :Solid Earth, 95(B10), 15303–15318.

Chang, S. J., Baag, C. E., and Langston, C. A. (2004). Joint analysis of teleseismic receiver functions and surface wave dispersion using the Genetic algorithm. Bull. Seismol. Soc. Am., 94(2), 977–987.

Chen, L., Wen, L. X., and Zheng, T. Y. (2005). A wave equation migration method for receiver function imaging: 1. Theory. J. Geophys. Res. :Solid Earth, 110(B11), B11309.

Chen, L., Zheng, T. Y., and Xu, W. W. (2006). A thinned lithospheric image of the Tanlu Fault Zone, eastern China: Constructed from wave equation based receiver function migration. J. Geophys. Res. :Solid Earth, 111(B9), B09312.

Dueker, K. G., and Sheehan, A. F. (1997). Mantle discontinuity structure from midpoint stacks of converted P to S waves across the Yellowstone hotspot track. J. Geophys. Res. :Solid Earth, 102(B4), 8313–8327.

Ford, H. A., Fischer, K. M., Abt, D. L., Rychert, C. A., and Elkins-Tanton, L. T. (2010). The lithosphere–asthenosphere boundary and cratonic lithospheric layering beneath Australia from Sp wave imaging. Earth Planet. Sci. Lett., 300(3-4), 299–310.

Gilbert, H. J., Sheehan, A. F., Dueker, K. G., and Molnar, P. (2003). Receiver functions in the western United States, with implications for upper mantle structure and dynamics. J. Geophys. Res. :Solid Earth, 108(B5), 2229.

He, Y. M. , Zheng, T. Y. , Ai, Y. S. , Hou, G. B. , and Chen, Q. F. (2018). Growth of the lower continental crust via the relamination of arc magma. Tectonophysics, 724-725, 42-50.

Julià, J., Ammon, C. J., Herrmann, R. B., and Correig, A. M. (2000). Joint inversion of receiver function and surface wave dispersion observations. Geophys. J. Int., 143(1), 99–112.

Kennett, B. L. N. (1983). Seismic Wave Propagation in Stratified Media. Cambridge: Cambridge University Press.

Kennett, B. L. N. , and Engdahl, E. R. 1991. Traveltimes for global earthquake location and phase identification. Geophys. J. Int. , 105(2), 429-465.

Kind, R., Yuan, X., Saul, J., Nelson, D., Sobolev, S. V., Mechie, J., Zhao, W., Kosarev, G., Ni, J., … Jiang, M. (2002). Seismic images of crust and upper mantle beneath Tibet: Evidence for Eurasian plate subduction. Science, 298(5596), 1219–1221.

Langston, C. A. (1979). Structure under Mount Rainier, Washington, inferred from teleseismic body waves. J. Geophys. Res. :Solid Earth, 84(B9), 4749–4762.

Lawrence, J. F., and Shearer, P. M. (2006). A global study of transition zone thickness using receiver functions. J. Geophys. Res. :Solid Earth, 111, B06307.

Li, Y. H., Wu, Q. J., Pan, J. T., and Sun, L. (2012). S-wave velocity structure of northeastern China from joint inversion of Rayleigh wave phase and group velocities. Geophys. J. Int., 190(1), 105–115.

Ling, Y., Zheng, T. Y., He, Y. M., and Hou, G. B. (2020). Response of Yunnan crustal structure to eastward growth of the Tibet Plateau and subduction of the India plate in Cenozoic. Tectonophysics, 797, 228661.

Liu, P. C., Hartzell, S., and Stephenson, W. (1995). Non-linear multiparameter inversion using a hybrid global search algorithm: applications in reflection seismology. Geophys. J. Int., 122(3), 991–1000.

Poppeliers, C., and Pavlis, G. L. (2003). Three-dimensional, prestack, plane wave migration of teleseismic P-to-S converted phases: 1. Theory. J. Geophys. Res. :Solid Earth, 108(B2), 2112.

Sheehan, A. F., Shearer, P. M., Gilbert, H. J., and Dueker, K. G. (2000). Seismic migration processing of P-SV converted phases for mantle discontinuity structure beneath the Snake River Plain, western United States. J. Geophys. Res. :Solid Earth, 105(B8), 19055–19065.

Tao, K., Niu, F. L., Ning, J. Y., Chen, Y. S., Grand, S., Kawakatsu, H., Tanaka, S., Obayashi, M., and Ni, J. (2014). Crustal structure beneath NE China imaged by NECESSArray receiver function data. Earth Planet. Sci. Lett., 398, 48–57.

Wu, Q. J., and Zeng, R. S. (1998). The crustal structure of Qinghai-Xizang plateau inferred from broadband teleseismic waveform. Acta Geophys. Sin., 41(5), 669–679.

Zeng, Q. D., Chen, R. Y., Yang, J. H., Sun, G. T., Yu, B., Wang, Y. B., and Chen, P. W. (2019). The metallogenic characteristics and exploring ore potential of the gold deposits in eastern Liaoning Province. Acta Petrol. Sin., 35(7), 1939–1963.

Zheng, T. Y., Zhao, L., and Zhu, R. X. (2009). New evidence from seismic imaging for subduction during assembly of the North China craton. Geology, 37(5), 395–398.

Zheng, T. Y., He, Y. M., Yang, J. H., and Zhao, L. (2015). Seismological constraints on the crustal structures generated by continental rejuvenation in northeastern China. Sci. Rep., 5, 14995.

Zheng, T. Y., He, Y. M., Ding, L., Jiang, M. M., Ai, Y. S., Mon, C. T., Hou, G. B., Sein, K., and Thant, M. (2020). Direct structural evidence of Indian continental subduction beneath Myanmar. Nat. Commun., 11, 1944.

Zhu, L. P. (2000). Crustal structure across the San Andreas Fault, Southern California from teleseismic converted waves. Earth Planet. Sci. Lett., 179(1), 183–190.


MingChen Sun, QingLin Zhu, Xiang Dong, JiaJi Wu, 2022: Analysis of inversion error characteristics of stellar occultation simulation data, Earth and Planetary Physics, 6, 61-69. doi: 10.26464/epp2022013


Xin Zhou, Gabriele Cambiotti, WenKe Sun, Roberto Sabadini, 2018: Co-seismic slip distribution of the 2011 Tohoku (MW 9.0) earthquake inverted from GPS and space-borne gravimetric data, Earth and Planetary Physics, 2, 120-138. doi: 10.26464/epp2018013


DeYao Zhang, WenYong Pan, DingHui Yang, LingYun Qiu, XingPeng Dong, WeiJuan Meng, 2021: Three-dimensional frequency-domain full waveform inversion based on the nearly-analytic discrete method, Earth and Planetary Physics, 5, 149-157. doi: 10.26464/epp2021022


Biao Yang, YanBin Wang, Li Zhao, LiMing Yang, ChengNing Sha, 2021: Depth variation of the Conrad discontinuity in the Qaidam Basin, northwestern China, and its crustal dynamic implications, Earth and Planetary Physics, 5, 296-304. doi: 10.26464/epp2021030


Rui Yan, YiBing Guan, XuHui Shen, JianPing Huang, XueMin Zhang, Chao Liu, DaPeng Liu, 2018: The Langmuir Probe onboard CSES: data inversion analysis method and first results, Earth and Planetary Physics, 2, 479-488. doi: 10.26464/epp2018046


Chun-Feng Li, Jian Wang, 2018: Thermal structures of the Pacific lithosphere from magnetic anomaly inversion, Earth and Planetary Physics, 2, 52-66. doi: 10.26464/epp2018005


XiaoZhong Tong, JianXin Liu, AiYong Li, 2018: Two-dimensional regularized inversion of AMT data based on rotation invariant of Central impedance tensor, Earth and Planetary Physics, 2, 430-437. doi: 10.26464/epp2018040


Ya Huang, Lei Dai, Chi Wang, RongLan Xu, Liang Li, 2021: A new inversion method for reconstruction of plasmaspheric He+ density from EUV images, Earth and Planetary Physics, 5, 218-222. doi: 10.26464/epp2021020


XinYan Zhang, ZhiMing Bai, Tao Xu, Rui Gao, QiuSheng Li, Jue Hou, José Badal, 2018: Joint tomographic inversion of first-arrival and reflection traveltimes for recovering 2-D seismic velocity structure with an irregular free surface, Earth and Planetary Physics, 2, 220-230. doi: 10.26464/epp2018021


Ting Lei, HuaJian Yao, Chao Zhang, 2020: Effect of lateral heterogeneity on 2-D Rayleigh wave ZH ratio sensitivity kernels based on the adjoint method: Synthetic and inversion examples, Earth and Planetary Physics, 4, 513-522. doi: 10.26464/epp2020050


GuoBin Yu, EnHai Liu, GuangLin Liu, Li Zhou, JunZhe Zeng, YuanPei Chen, XiangDong Zhou, RuJin Zhao, ShunYi Zhu, 2020: Moderate Resolution Imaging Camera (MoRIC) of China’s First Mars Mission Tianwen-1, Earth and Planetary Physics, 4, 364-370. doi: 10.26464/epp2020056


TianYu Zheng, YongHong Duan, WeiWei Xu, YinShuang Ai, 2017: A seismic model for crustal structure in North China Craton, Earth and Planetary Physics, 1, 26-34. doi: 10.26464/epp2017004


RuoXian Zhou, XuDong Gu, KeXin Yang, GuangSheng Li, BinBin Ni, Juan Yi, Long Chen, FuTai Zhao, ZhengYu Zhao, Qi Wang, LiQing Zhou, 2020: A detailed investigation of low latitude tweek atmospherics observed by the WHU ELF/VLF receiver: I. Automatic detection and analysis method, Earth and Planetary Physics, 4, 120-130. doi: 10.26464/epp2020018


Juan Yi, XuDong Gu, Wen Cheng, XinYue Tang, Long Chen, BinBin Ni, RuoXian Zhou, ZhengYu Zhao, Qi Wang, LiQing Zhou, 2020: A detailed investigation of low latitude tweek atmospherics observed by the WHU ELF/VLF receiver: 2. Occurrence features and associated ionospheric parameters, Earth and Planetary Physics, 4, 238-245. doi: 10.26464/epp2020023


ChengWei Yang, ChengHu Wang, GuiYun Gao, Pu Wang, 2022: Cretaceous–Cenozoic regional stress field evolution from borehole imaging in the southern Jinzhou area, western Liaoning, North China Craton, Earth and Planetary Physics, 6, 123-134. doi: 10.26464/epp2022001


Cristiano Max Wrasse, Cosme Alexandre Oliveira Barros Figueiredo, Diego Barros, Hisao Takahashi, Alexander José Carrasco, Luiz Fillip Rodrigues Vital, Láysa Cristina Araujo Resende, Fábio Egito, Geângelo de Matos Rosa, Antonio Hélder Rodrigues Sampaio, 2021: Interaction between Equatorial Plasma Bubbles and a Medium-Scale Traveling Ionospheric Disturbance, observed by OI 630 nm airglow imaging at Bom Jesus de Lapa, Brazil, Earth and Planetary Physics, 5, 397-406. doi: 10.26464/epp2021045


Biao Guo, JiuHui Chen, QiYuan Liu, ShunCheng Li, 2019: Crustal structure beneath the Qilian Orogen Zone from multiscale seismic tomography, Earth and Planetary Physics, 3, 232-242. doi: 10.26464/epp2019025


ShiBang Li, HaoYu Lu, Jun Cui, YiQun Yu, Christian Mazelle, Yun Li, JinBin Cao, 2020: Effects of a dipole-like crustal field on solar wind interaction with Mars, Earth and Planetary Physics, 4, 23-31. doi: 10.26464/epp2020005


HongLin Jin, Yuan Gao, XiaoNing Su, GuangYu Fu, 2019: Contemporary crustal tectonic movement in the southern Sichuan-Yunnan block based on dense GPS observation data, Earth and Planetary Physics, 3, 53-61. doi: 10.26464/epp2019006


ZiQi Zhang, Yuan Gao, 2019: Crustal thicknesses and Poisson's ratios beneath the Chuxiong-Simao Basin in the Southeast Margin of the Tibetan Plateau, Earth and Planetary Physics, 3, 69-84. doi: 10.26464/epp2019008

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)

Figures And Tables

A new approach for inversion of receiver function for crustal structure in the depth domain

TianYu Zheng, YuMei He, Yue Zhu