Co-sponsored by the Chinese Geophysical Society(CGS);
Institute of Geology and Geophysics, CAS;
and Science Press

ISSN  2096-3955

CN  10-1502/P

First results of optical meteor and meteor trail irregularity from simultaneous Sanya radar and video observations
GuoZhu Li, BaiQi Ning, Ao Li, SiPeng Yang, XiuKuan Zhao, BiQiang Zhao, WeiXing Wan
doi: 10.26464/epp2018002
Meteoroids entering the Earth's atmosphere can create meteor trail irregularity seriously disturbing the background ionosphere. Although numerous observations of meteor trail irregularities were performed with VHF/UHF coherent scatter radars in the past, no simultaneous radar and optical instruments were employed to investigate the characteristics of meteor trail irregularity and its corresponding meteoroid. By installing multiple video cameras near the Sanya VHF radar site, an observational campaign was conducted during the period from November 2016 to February 2017. A total of 242 optical meteors with simultaneous non-specular echoes backscattered from the plasma irregularities generated in the corresponding meteor trails were identified. A good agreement between the angular positions of non-specular echoes derived from the Sanya radar interferometer and those of optical meteors was found, validating that the radar system phase offsets have been properly calibrated. The results also verify the interferometry capability of Sanya radar for meteor trail irregularity observation. The non-specular echoes with simultaneous optical meteors were detected at magnetic aspect angles greater than ~78°. Based on the meteor visual magnitude estimated from the optical data, it was found that the radar non-specular echoes corresponding to brighter meteors survived for longer duration. This could provide observational evidence for the significance of meteoroid mass on the duration of meteor trail irregularity. On the other hand, the simultaneous radar and video common-volume observations showed that there were some cases with optical meteors but without radar non-specular echoes. One possibility could be that some of the optical meteors appeared at extremely low altitudes where meteor trail irregularities rarely occur.
key words: meteor, ionosphere, radar, non-specular echo
A planetary perspective on Earth’s space environment evolution
Yong Wei, XinAn Yue, ZhaoJin Rong, YongXin Pan, WeiXing Wan, RiXiang Zhu
doi: 10.26464/epp2017009
The planet Earth is an integrated system, in which its multi-spheres are coupled, from the space to the inner core. Whether the space environment in short to long terms has been controlled by the earth’s interior process is contentious. In the past several decades, space weather and space climate have been extensively studied based on either observation data measured directly by man-made instruments or ancient data inferred indirectly from some historical medium of past thousands of years. The acquired knowledge greatly helps us to understand the dynamic processes in the space environment of modern Earth, which has a strong magnetic dipole and an oxygen-rich atmosphere. However, no data is available for ancient space weather and climate (>5 ka). Here, we propose to take the advantage of " space-diversity” to build a " generalized planetary space family”, to reconcile the ancient space environment evolution of planet Earth from modern observations of other planets in our solar system. Such a method could also in turn give us a valuable insight into other planets’ evolution.
key words: space environment evolution, space weather, generalized planetary space family, space diversity
A simulation study of 630 nm and 557.7 nm airglow variations due to dissociative recombination and thermal electrons by high-power HF heating
Tong Dang, JiuHou Lei, XianKang Dou, WeiXing Wan
doi: 10.26464/epp2017006
One of the important effects of the ionospheric modification by high-power waves is the airglow enhancement. Both the thermal electrons and the dissociation recombination contribute to generate the airglow emissions during HF heating. However, the relative importance of the airglow emission induced by dissociative recombination and thermal electrons has been rarely investigated. In this study, we carry out a simulation study on the airglow produced by high-power HF heating at nighttime associated with dissociative recombination and thermal electrons. SAMI2 (Sami2 is Another Model of the Ionosphere) is employed to simulate the ionospheric variations during the HF heating. The main conclusions from this study are as follows: (1) For the airglow induced by dissociative recombination, both 630.0 nm and 557.7 nm emissions show a decrease at the heating wave reflection height during the heating period, while when the heating is turned off, an increase is shown at lower altitudes. The reduction of airglow during the heating is caused by the rapid increase of electron temperature and the diffusion of plasmas dominates the after-heating airglow enhancement. (2) 630.0 nm emission due to thermal electrons is greatly enhanced at the wave reflection height, indicating that thermal electrons play a major role in exciting 630.0 nm emission. For the 557.7 nm emission, the excitation threshold (4.17 eV) is too high for thermal electrons. (3) The combined effect of dissociative recombination and thermal electrons could be the possible reason for the observed X-mode (extraordinary mode) suppression of 630.0 nm airglow during O-mode (ordinary mode) enhancement.
key words: airglow, thermal electron, dissociative recombination, HF heating
Earth science, planetary vision——A foreword to Earth and Planetary Physics (EPP)
WeiXing Wan
doi: 10.26464/epp2017001
key words:
Chinese ionospheric investigations in 2016–2017
LiBo Liu, WeiXing Wan
doi: 10.26464/epp2018011
After the release of the previous report to the Committee on Space Research (COSPAR) on progress achieved by Chinese scientists in ionospheric researches (Liu LB and Wan WX, 2016), in the recent two years (2016–2017) many interesting new investigations into various ionospheric related issues have been completed. In this report, about 100 publications are summarized. The topics highlighted are as follows: Ionospheric space weather, ionospheric dynamics, ionospheric climatology and modelling, ionospheric irregularity and scintillation, Global Navigation Satellite System (GNSS) related ionospheric issues and other techniques, and radio wave propagation in the ionosphere. An outstanding feature is that more and more observations from the Meridional Project supported the ionospheric investigations.
key words: ionosphere; ionospheric storm; space weather; ionospheric dynamics; irregularity
Optimization of the Mars ionospheric radio occultation retrieval
JunYi Wang, XinAn Yue, Yong Wei, WeiXing Wan
doi: 10.26464/epp2018027
Electron density is a key parameter to characterize Martian ionospheric structure and dynamics. Based on the ephemeris and auxiliary information derived from the Spacecraft, Planet, Instruments, C-matrix, and Events (SPICE) toolkit, we calculated the bending angle of signal path from the frequency residuals measured by the Mars Express Radio Science Experiment (MaRS) of the Mars Express (MEX) mission under the assumption of a spherically symmetric ionosphere. We stratified the ionosphere into layers and assumed a linear change of bending angle between layers, to derive profiles in radial distance of refractivity with the optimized parameters of upper integral limit of 4890 km and baseline correction boundary of 3690 km. Meanwhile, we also compared the retrieved electron density profiles between the frequency residuals of the single-frequency and differential Doppler of the dual-frequency. In total, ~640 electron density profiles of Martian ionosphere between April 2004 and April 2015 were retrieved successfully. There are 24 profiles identified manually that exhibit an additional sporadic layer occurrence below the normal two-layers. We also found that the peak altitude of this layer increases with the main peak altitude.
key words: Mars, ionosphere, radio occultation, electron density

Year of publication

Related authors

Related hot words

Supported by Beijing Renhe Information Technology Co. LtdE-mail: info@rhhz.net