Co-sponsored by the Chinese Geophysical Society(CGS);
Institute of Geology and Geophysics, CAS;
and Science Press

ISSN  2096-3955

CN  10-1502/P

Exact local refinement using Fourier interpolation for nonuniform-grid modeling
JinHai Zhang, ZhenXing Yao
doi: 10.26464/epp2017008
Numerical solver using a uniform grid is popular due to its simplicity and low computational cost, but would be unfeasible in the presence of tiny structures in large-scale media. It is necessary to use a nonuniform grid, where upsampling the wavefield from the coarse grid to the fine grid is essential for reducing artifacts. In this paper, we suggest a local refinement scheme using the Fourier interpolation, which is superior to traditional interpolation methods since it is theoretically exact if the input wavefield is band limited. Traditional interpolation methods would fail at high upsampling ratios (say 50); in contrast, our scheme still works well in the same situations, and the upsampling ratio can be any positive integer. A high upsampling ratio allows us to greatly reduce the computational burden and memory demand in the presence of tiny structures and large-scale models, especially for 3D cases.
key words: local refinement, varying grid, tiny structures, fourier interpolation, nonuniform grid
Preliminary result for the rupture process of Nov.13, 2017, Mw7.3 earthquake at Iran-Iraq border
WeiMin Wang, JianKun He, JinLai Hao, ZhenXing Yao
doi: 10.26464/epp2018008
key words: Iran-Iraq border earthquake, source process, waveform inversion
Preliminary results for the rupture process of Jan. 10, 2018, Mw7.6 earthquake at east of Great Swan Island, Honduras
WeiMin Wang, JinLai Hao, ZhenXing Yao
doi: 10.26464/epp2018010
key words: east of Great Swan Island earthquake, source process, waveform inversion

Year of publication

Related authors

Related hot words

Supported by Beijing Renhe Information Technology Co. LtdE-mail: info@rhhz.net