EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Application system and data description of the China Seismo-Electromagnetic Satellite
JianPing Huang, XuHui Shen, XueMin Zhang, HengXin Lu, Qiao Tan, Qiao Wang, Rui Yan, Wei Chu, YanYan Yang, DaPeng Liu, Song Xu
doi: 10.26464/epp2018042
The China Seismo-Electromagnetic Satellite, launched into orbit from Jiuquan Satellite Launch Centre on February 2nd, 2018 , is China’s first space satellite dedicated to geophysical exporation. The satellite carries eight scientific payloads including high-precision magnetometers to detect electromagnetic changes in space, in particular changes associated with global earthquake disasters. In order to encourage and facilitate use by geophysical scientists of data from the satellite’s payloads, this paper introduces the application systems developed for the China Seismo-Electromagnetic Satellite by the Institute of Crustal Dynamics, China Earthquake Administration; these include platform construction, data classification, data storage, data format, and data access and acquisition.
Keywords: China Seismo-Electromagnetic Satellite, application system, geophysical field, data classification
Examples of unusual ionospheric observations by the CSES prior to earthquakes
Rui Yan, XuHui Shen, JianPing Huang, Qiao Wang, Wei Chu, DaPeng Liu, YanYan Yang, HengXin Lu, Song Xu
doi: 10.26464/epp2018050
The CSES (China seismic electromagnetic satellite) was launched on February 2, 2018 in a circular polar orbit at an altitude of ~507 km. One of the main objectives of CSES is to search for and characterize ionospheric perturbations that can be associated with seismic activities, to better understand the generation mechanism of such perturbations. Its scientific payload can measure a broad frequency range of electromagnetic waves and some important plasma parameters. This paper is a first-hand study of unusual observations recorded by the CSES over seismic regions prior to four earthquakes with M >7.0 since the satellite's launch. CSES detectors measured irregularities near the epicenter of these four earthquakes. It is already clear that data from instruments onboard the CSES will be of significant help in studies of characteristics of ionospheric perturbations related to earthquakes and their generation mechanisms.
Keywords: CSES, ionospheric perturbations, earthquake
Preliminary results of the High Energetic Particle Package on-board the China Seismo-Electromagnetic Satellite
Wei Chu, JianPing Huang, XuHui Shen, Ping Wang, XinQiao Li, ZhengHua An, YanBing Xu, XiaoHua Liang
doi: 10.26464/epp2018047
The high energetic particle package (HEPP) on-board the China Seismo-Electromagnetic Satellite (CSES) was launched on February 2, 2018. This package includes three independent detectors: HEPP-H, HEPP-L, and HEPP-X. HEPP-H and HEPP-L can detect energetic electrons from 100 keV to approximately 50 MeV and protons from 2 MeV to approximately 200 MeV. HEPP-X can measure solar X-rays in the energy range from 1 keV to approximately 20 keV. The objective of the HEPP payload was to provide a survey of energetic particles with high energy, pitch angle, and time resolutions in order to gain new insight into the space radiation environments of the near-Earth system. Particularly, the HEPP can provide new measurements of the magnetic storm related precipitation of electrons in the slot region, and the dynamics of radiation belts. In this paper, the HEPP scientific data sets are described and initial results are provided. The scientific data can show variations in the flux of energetic particles during magnetic storms.
Keywords: CSES, energetic particles, HEPP, data sets, data quality, preliminary results

Supported by Beijing Renhe Information Technology Co. LtdE-mail: info@rhhz.net