ISSN  2096-3955

CN  10-1502/P

A new approach to study terrestrial yardang geomorphology based on high-resolution data acquired by unmanned aerial vehicles (UAVs): A showcase of whaleback yardangs in Qaidam Basin, NW China
Xiao Xiao, Jiang Wang, Jun Huang, Binlong Ye
doi: 10.26464/epp2018037
Yardangs are wind-eroded ridges usually observed in arid regions on Earth and other planets. Previous geomorphology studies of terrestrial yardang fields depended on satellite data and limited fieldwork. The geometry measurements of those yardangs based on satellite data are limited to the length, the width, and the spacing between the yardangs; elevations could not be studied due to the relatively low resolution of the satellite acquired elevation data, e.g. digital elevation models (DEMs). However, the elevation information (e.g. heights of the yardang surfaces) and related information (e.g. slope) of the yardangs are critical to understanding the characteristics and evolution of these aeolian features. Here we report a novel approach, using unmanned aerial vehicles (UAVs) to generate centimeter-resolution orthomosaics and DEMs for the study of whaleback yardangs in Qaidam Basin, NW China. The ultra-high-resolution data provide new insights into the geomorphology characteristics and evolution of the whaleback yardangs in Qaidam Basin. These centimeter-resolution datasets also have important potential in: (1) high accuracy estimation of erosion volume; (2) modeling in very fine scale of wind dynamics related to yardang formation; (3) detailed comparative planetary geomorphology study for Mars, Venus, and Titan.
Keywords: unmanned aerial vehicle (UAV), structure from motion, yardang, aeolian research, comparative planetary geology

Supported by Beijing Renhe Information Technology Co. LtdE-mail: info@rhhz.net